

Note

Electrophilic substitution reactions on 3-bromoacetylcoumarins

K Y Anklekar, R A Kusanur & M V Kulkarni*

Department of Chemistry, Karnataka University
Dharwad 580 003, India

E-mail: drmvk274@yahoo.co.in

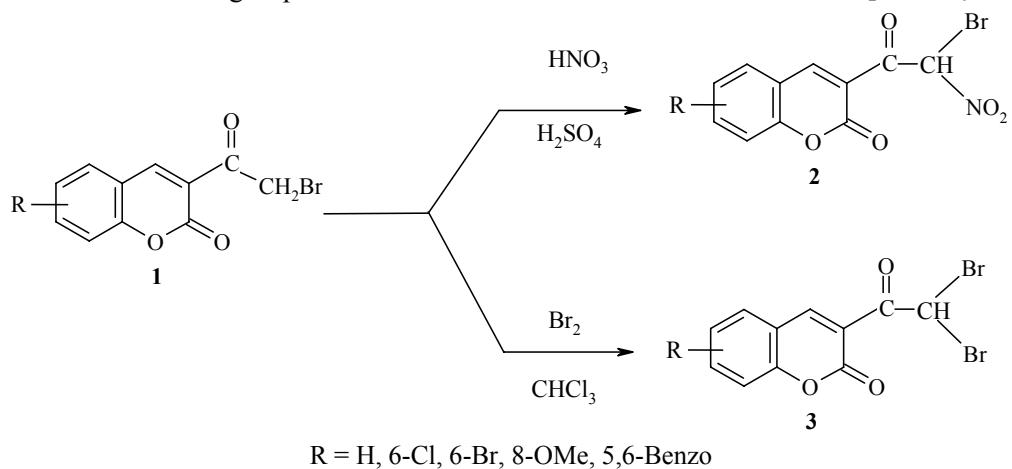
Received 4 August 2004; accepted (revised) 5 April 2005

Attempted nitration and bromination of 3-bromoacetylcoumarins result in the formation of racemic 3- ω -bromonitroacetylcoumarins and 3- ω -dibromoacetylcoumarins.

Keywords: Electrophilic substitution, nitration, bromination, bromoacetylcoumarins

IPC: Int.Cl. 7 C 07 D

Electrophilic substitution reactions of compounds containing active methylene groups have been of considerable mechanistic interest. Nitration of cyclic ketones¹, alkylpyridines², esters^{3,4} and isoxazolines⁵ have been carried out with a variety of reagents like alkyl nitrites, acetone cyanohydrin nitrate and fuming nitric acid. Bromination of diaryl- α -methylene sulphoxides⁶ and dialkyl ketones⁷ has been found to occur at the active methylene group. In the case of β -ketoester⁸ and acetoacetanilides⁹ bromination has been found to occur at the methyl group leading to the formation of stable compounds.


In an attempt to synthesise coumarins analogues of chloramphenicol¹⁰ with a nitro group in the benzene

ring, nitration of 3-bromoacetylcoumarin **1** was carried out (**Scheme I**). The resulting compound **2** did not show the presence of methylene protons in the ¹H NMR spectrum and hence it was inferred that the nitro group entered the active methylene group. Similarly, bromination also resulted in the formation 3- ω -dibromoacetylcoumarins **3**. The reaction is likely to occur via the enol form because of the enhanced acidity of the methylene protons.

Nitration of various 3-bromoacetylcoumarins^{11, 12} was carried out at ice-bath temperatures and the completion of the reaction was ensured by heating the reaction on a water-bath for 2 hr followed by the usual work up. Similarly, addition of liquid bromine was carried out at room temperature and the reaction mixture was heated on a water-bath till the evolution of HBr gas stopped. In both the cases, the yields were in the range of 75-85%.

In the IR spectrum, the racemic 3- ω -bromonitroacetylcoumarin **2a** exhibited the lactone and C-3 carbonyl stretching bands at 1720 and 1680 cm⁻¹. The ¹H NMR spectrum (DMSO-*d*₆) displayed two singlets at δ 9.15 and 7.25, which have been assigned to C₄-H and OCHBrNO₂ protons, respectively. The aromatic multiplet was observed around δ 7.8-8.0. The mass spectrum showed the M-H peak at m/z 310, 312. M-Br and (M-CHBrNO₂) peaks were observed at m/z 232 (100%) and 173 (40%), respectively.

The *gem* ω -dibromoacetylcoumarin **3a** exhibited the lactone and the C-3 carbonyl stretching bands at 1739 and 1692 cm⁻¹, respectively. The ¹H NMR

R = H, 6-Cl, 6-Br, 8-OMe, 5,6-Benzo

Scheme I

spectrum (CDCl_3) showed two singlets at δ 8.6 and 7.1 due to $\text{C}_4\text{-H}$ and OCHCHBr_2 protons, respectively. The aromatic multiplet was observed in the range δ 7.3 to 7.6. In the mass spectra the low intensity molecular ion peak was observed at m/z 344, 346 and 348, respectively. M-Br and M- CHBr_2 peaks were observed at m/z 265, 267 (50%) and 173 (100%), respectively. IR and ^1H NMR data for all the compounds are given in **Table I**. The structures of all the compounds were consistent with their spectral data and elemental analysis.

X-ray analysis of compound **3e** has shown that this compound exists in the monoclinic crystal system. The conformation in the solid state indicates that the C_3 -carbonyl is *cis* to the $\text{C}_3\text{-C}_4$ double bond and adopts a *gauche* arrangement when viewed along the OC-CHBr_2 bond, the details of which have been published¹³.

Experimental Section

Melting points were taken in open capillaries and are uncorrected. IR spectra were recorded on a Nicolet 410 FTIR spectrophotometer. The ^1H NMR spectra were recorded on a Bruker 300 MHz FTNMR

spectrometer in CDCl_3 and $\text{DMSO-}d_6$ using TMS as standard.

3-Bromoacetylcoumarins were prepared according to the earlier literature methods^{11, 12}.

3- ω -Bromonitroacetylcoumarin 2a. 3-Bromoacetylcoumarin (1.3 g, 0.005M) was dissolved in conc. H_2SO_4 (2 mL). To this 3 mL of nitrating mixture (1 mL conc. HNO_3 + 2 mL conc. H_2SO_4) was added with stirring at 0 °C. The reaction mixture was heated to 60-70 °C on water-bath for 2 hr. Then, it was poured into ice water. The separated yellow coloured solid was repeatedly washed with water, dried and recrystallized from acetic acid to get **2a**, yield 1.1g (72%).

Compounds **2b-d** was prepared in the same manner.

3- ω -gem Dibromoacetylcoumarin 3a. Bromine (0.9 g, 0.005M) in dry chloroform (10 mL) was added dropwise to 3-bromoacetylcoumarin (1.3 g, 0.005M) in dry chloroform (10 mL) with stirring for 5 hr. The reaction mixture was warmed on a water-bath (60-70°C) to expel HBr gas, cooled and concentrated. The separated solid was crystallized from carbon tetrachloride to get **3a**, yield 1.34g (80%).

Table I — Characterization of compounds **2a-e** and **3a-e**

Compd	R	Yield (%)	m.p. °C	Mol. formula	Found (Calcd) (%)			^1H NMR
					C	H	N	
2a	H	72	225-26	$\text{C}_{11}\text{H}_6\text{NO}_5\text{Br}$	42.43 (42.34	1.78 1.95	4.63 4.47)	7.25 (s,1H,C-H),9.15 (s,1H, $\text{C}_4\text{-H}$) 7.8-8.0 (m,4H,Ar-H)
2b*	6-Cl	86	250-51	$\text{C}_{11}\text{H}_5\text{NO}_5\text{ClBr}$	38.28 (38.09	1.63 1.48	4.01 4.06)	*
2c	6-Br	80	270-71	$\text{C}_{11}\text{H}_5\text{NO}_5\text{Br}_2$	34.12 (33.76	1.41 1.31	3.43 3.56)	7.67 (s, 1H,C-H), 8.15 (s, 1H, $\text{C}_5\text{-H}$), 8.18 (d, 1H, $\text{C}_7\text{-H}$, J = 9.03 Hz), 7.70 (d, 1H, $\text{C}_8\text{-H}$, J = 9.04 Hz), 8.64 (s, 1H, $\text{C}_4\text{-H}$)
2d	5,6-Benzo	80	256-57	$\text{C}_{15}\text{H}_8\text{NO}_5\text{Br}$	48.83 (48.39	2.32 2.17	3.18 3.78)	7.58 (s,1H, C-H), 7.80-9.41 (m, 6H, Ar-H), 9.43 (s, 1H, $\text{C}_4\text{-H}$)
3a	H	80	151-52	$\text{C}_{11}\text{H}_6\text{O}_3\text{Br}_2$	38.73 (38.17	1.83 1.78	-- -)	7.10 (s,1H,C-H),9.15 (s,1H, $\text{C}_4\text{-H}$), 7.80-8.00 (m,4H,Ar-H)
3b	6-Cl	85	209-10	$\text{C}_{11}\text{H}_5\text{O}_3\text{ClBr}_2$	34.82 (34.71	1.43 1.38	-- -)	7.38 (s, 1H, C-H), 7.655 (d, 1H, $\text{C}_8\text{-H}$, J = 8.8 Hz), 7.85 (dd,1H, $\text{C}_7\text{-H}$, J_o = 8.9 Hz, J_m = 2.4 Hz), 8.123 (d, 1H, $\text{C}_5\text{-H}$, J_m = 2.37 Hz), 8.95 (s,1H, $\text{C}_4\text{-H}$)
3c	6-Br	80	210-1	$\text{C}_{11}\text{H}_5\text{O}_3\text{Br}_3$	31.05 (31.21	1.23 1.18	-- -)	7.38 (s,1H, C-H),7.515 (d,1H, $\text{C}_8\text{-H}$, J = 8.75 Hz), 7.955 (dd, 1H, $\text{C}_7\text{-H}$, J_o =8.58Hz, J_m = 2.25 Hz),8.253-(d,1H, C_5H , J_m = 2.16Hz) 8.95 (s,1H, $\text{C}_4\text{-H}$)
3d	5,6-Benzo	90	212-13	$\text{C}_{15}\text{H}_8\text{O}_3\text{Br}_2$	45.25 (45.46	2.13 2.05	-- -)	7.60 (s, 1H,C-H), 7.7-8.7(m, 6H,Ar-H), 9.62(s, 1H, $\text{C}_4\text{-H}$).
3e	8-OCH ₃	79	175-76	$\text{C}_{12}\text{H}_8\text{O}_4\text{Br}_2$	38.19 (38.31	2.23 2.16	-- -)	3.94 (s, 3H,OCH ₃),7.36 (s, 1H,C-H), 7.39-7.54 (m, 3H, Ar-H), 8.97 (s, 1H, $\text{C}_4\text{-H}$)

* Compound is insoluble in CDCl_3 and $\text{DMSO-}d_6$

Compounds **3b-e** were prepared in the same manner.

Acknowledgement

Authors thank the RSIC-IIT, Madras, CDRI, Lucknow, and IISc, Bangalore for spectral and analytical data.

References

- 1 Feuer H, Shepherd J W & Savides C, *J Am Chem Soc*, **78**, **1956**, 4364.
- 2 Feuer H & Lawrence J P, *J Org Chem*, **37**, **1972**, 3662.
- 3 Enmons W D & Freeman J P, *J Am Chem Soc*, **77**, **1955**, 4391.
- 4 Nutiu R & Sebe I, *Rev Roum De Chim*, **16**, **1971**, 922.
- 5 Feuer H, Bevinakatti H S & Luo X G, *J Heterocyclic Chem*, **24**, **1987**, 9.
- 6 Cinquini M & Colonna S., *J Chem Soc, Perkin (I)*, **1972**, 1886.
- 7 Rappe C & Schotte L, *Acta Chem Scand*, **16**, **1962**, 2060.
- 8 Burger A & Ulyot G E, *J Org Chem*, **12**, **1947**, 346.
- 9 Chudgar R J & Trivedi G K, *J Indian Chem Soc*, **46**, **1969**, 537.
- 10 Bevinakatti H S & Badiger V V, *J Heterocycl Chem*, **19**, **1982**, 69.
- 11 Koelsch C F, *J Am Chem Soc*, **72**, **1950**, 2993.
- 12 Rajeshwar Rao V & Padmanabha Rao T V, *Indian J Chem*, **25B**, **1986**, 413.
- 13 Kokila M K, Puttaraja, Kulkarni M V & Shivaprakash N C, *Zei, Kris, NCS*, **215**, **2000**, 69.